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Local and global topological criteria for the existence or non-existence of 
"potential defying" chemical species are investigated. The number and type 
of chemical structures which are no t  indicated by the qualitative features of 
potential surfaces and which owe their existence to an interplay of vibrational 
stabilization and destabilization in various domains of potential surfaces are 
related to topological invariants of compact manifolds. The topological analy- 
sis implies that potential defying species (including both stable and transition 
structures) never  occur  alone,  but several of them occur simultaneously. Condi- 
tions are given for the minimum number of potential defying species of various 
types. 
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1. Introduction 

In recent studies [1-3] an interesting new explanation has been proposed for the 
stability of the molecule IHI. Although no true minimum (besides degenerate 
minima at infinite nuclear separations) exists on the Born-Oppenheimer potential 
surface of IHI, the interplay of curvature variations and the resulting effects on 
the vibrational levels (most notably, on the zero-point energy) give rise to a bound 
state in the neighborhood of a saddle point of the potential surface. 

On intuitive basis it appears evident that analogous effects of curvature variations 
are not restricted to the appearance of bound states near saddle points and in 
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this note a simple topological model is proposed for the detection and analysis 
of such cases. In fact, peculiar curvature variations may result in a series of 
features that are unexpected according to the conventional interpretation of 
potential surfaces. On the one hand, a variety of stable structures as well as 
transition structures may emerge in domains where the semiclassical potential 
surface model does not indicate them, and on the other hand, some stable 
structures, as well as transition structures predicted by the semiclassical model ~ 
do not necessarily appear in the more advanced model. We shall demonstrate 
the existence of the above unexpected features, using a topological technique 
based upon curvature properties, similar to the To topology originally devised 
to distinguish the chemically important "reactive domains" of potential surfaces 
from domains of lesser importance [4]. 

It has been recently shown that the Born-Oppenheimer potential energy hypersur- 
face of a given electronic state of a system of N nuclei and k electrons gives rise 
to a variety of topologizations of the nuclear configuration space nR [4-9]. These 
topologies are useful for a global analysis of the network of all reactions possible 
for all molecules composed from N nuclei, within the constraints of the given 
electronic state [6]. For a local (e.g. vibrational) analysis of the neighborhoods 

i 

of critical points (e.g. minima) of the hypersurface a differentiable manifold 
structure has been proposed [7]. 

Most (although not all) of the above topologies and topological manifolds are 
defined in terms of an intrinsic reaction coordinate [10-12], that corresponds to 
a hypothetical rotationless and vibrationless infinitely slow displacement of the 
nuclei in a mass-weighted reference frame. In the present study we shall show 
that for the development of a chemically useful and still fairly simple topologiz- 
ation of ~R not all of the previously applied constraints and approximations are 
necessary. Analogous topologies and topological manifolds can be obtained 
within a model which incorporates certain vibrational information in the very 
definitions of these topologies. These topologies also lead, on the one hand, to 
the demonstration of the existence of unexpected chemical species, and on the 
other hand, to that of the non-existence of certain species, which could be expected 
on a purely intuitive basis. 

The solution of the Schr~Sdinger equation for the nuclear motions over a compli- 
cated multidimensional potential surface is an extremely difficult task. Rather 
than attempting such a solution, we propose an approximate model which 
incorporates an essential part of the vibrational energy and which also provides 
a basis for a chemically useful topology. 

2. Motivation and topological preliminaries 

The potential surface model of molecular systems, although only an approxima- 
tion in the rigorous quantum mechanical sense, is a very successful tool in studying 
chemical problems. In the usual Born-Oppenheimer approximation this model 
is based on a formal separation of the nuclear kinetic energy from other energy 
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terms. By considering formal trajectories of nuclear motions on the potential 
energy surface E(r) over a nuclear configuration space nR, a semiclassical model 
of chemical reactions is obtained. One may, however, ask the following question: 
by analogy with the zero-point energy of harmonic oscillators in idealized para- 
bolic potentials, is there an additional energy functional AE~ defined over 
the entire nuclear configuration space nR, that represents (at least in some 
approximate sense) the minimum amount of kinetic energy, intrinsic to the actual 
potential energy hypersurface? Our aim is to find a continuous functional E~ 
over ~R that contains, in addition to the potential energy, an "intrinsic part" of 
kinetic energy. We expect that this functional accounts for both "normal" and 
"potential defying" species in an intuitively simple way, in terms of its minima 
and saddle points, much like in the conventional interpretation of potential 
surfaces one expects minima and saddle points to represent chemical species 
(stable and transition structures, respectively). 

As long as one focuses on a single (e.g. the lowest energy) bound state, the answer 
is rather straightforward. As a simple example, take a two-dimensional paraboloid 
as the potential surface. Evidently, in this case one can take AE~ = -E(r )+  Eo 
where Eo is the (absolute) zero-point energy. Then the potential plus this intrinsic 
kinetic energy is constant, 

E(r)+ AE~ Eo (1) 

for the entire two-dimensional nuclear configuration space 2R, as the lowest 
energy vibrational wavefunction is non-zero everywhere, in ZR, and it vanishes 
in the strict sense only at infinity. 

On more realistic potential energy hypersurfaces, with many minima and saddle 
points, we do face, in principle, a similar situation. The wavefunction of the 
lowest vibrational state of the absolute minimum of E(r) ,  belonging to the lowest 
bound state, is not strictly localized. In principle, it extends over the entire nuclear 
configuration space "R: although it approaches zero rapidly far from the 
minimum, nonetheless, it is non-zero almost everywhere in "R. Hence, again, 
AE~ = - E ( r )  + Eo is a possible choice. However, the above AE~ is clearly 
unsatisfactory for our present purposes, since it treats every nuclear configuration 
r c  nR as a (possibly severely distorted) geometry occurring during vibration 
about a single distinguished minimum in the lowest basin on the hypersurface. 
Instead, we may consider a functional AE~ that for every r e  "R refers to the 
zero-point energy of a minimum or saddle point in the near vicinity of r. One 
can partition the entire nuclear configuration space nR into domains each contain- 
ing one critical point (e.g. the catchment region partitioning, vide infra) and 
define AE~ in each domain C in terms of the local zero-point energy Eo(C) 
of the corresponding critical point: AE~ This AE~ 
however, is discontinuous at the boundaries of the domains, that is contrary to 
our goal of a representation where minima and saddle points indicate both 
"normal" and "potential defying" species. A more important objection to the 
above construction is that the usual topological techniques for the enumeration 



118 P.G. Mezey 

of critical points are not applicable to the resulting functional E~ These 
techniques are applicable if AE~ is at least continuous. 

The intuitive concept of zero-point energy on a potential surface is based on a 
formal separation of the "slow", large amplitude motions of nuclei from the 
"fast" nuclear motions in the remaining degrees of freedom. The "slow" nuclear 
motions are often treated semiclassically using formal reaction paths, whereas 
the "fast" motions, giving rise to zero-point energy contributions, are treated 
quantum mechanically. This model is in fact an approximation that combines 
classical and quantum mechanical concepts. In the present study we shall explore 
a somewhat modified model. In one of the proposed approximations we shall 
treat all nuclear motions quantum mechanically, except those which occur along 
directions of negative curvature of the potential energy surface, which latter ones 
will be treated semiclassically, assuming that they do not contribute to the 
zero-point energy. Since the sign of various canonical curvatures may change 
from one domain of the potential energy hypersurface to another, at a point 
where such a sign change occurs the dimension of the formal subspace that is 
treated quantum mechanically, also changes. Neighborhoods of such points 
require special treatment in the model in order to ensure compatibility of the 
quantum mechanical and formal semiclassical components of nuclear motions. 

If possible, we would like to construct a twice continuously differentiable func- 
tional AE~ that is defined at every point r~nR in terms of some formal 
zero-point energy at the very point r, irrespectively whether r is a critical point 
of E(r) or not. The ideal AE~ functional, when added to E(r), 

E~ = E(r)+ AE~ (2a) 

converts it into a new hypersurface E~ that properly reproduce the local 
zero-point energy at nondegenerate critical points of E(r) and does not introduce 
false critical points elsewhere. Hence the ideal hypersurface E~ has the intui- 
tively appealing property that its minima and simplest saddle points indeed 
correspond to stable molecules and transition structures, resp., after the minimum 
kinetic energy, intrinsic to the original hypersurface E(r) has been taken into 
account. In this study we shall propose various approximations to the postulated 
ideal functional AE~ and we shall attempt to demonstrate their utility in 
studying potential defying species. 

We expect our approximations to AE~ to fulfill the following conditions: 
(i) At every minimum m of potential energy E(r) AE~ should reproduce the 
local zero-point energy. 
(ii) At every saddle point of transition structures AE~ should contain the local 
zero-point energy contribution from all real vibrational frequencies. 
(iii) In order to have AE~ defined over the entire nuclear configuration space, 
AE~ should continuously interpolate between AE ~ values at various minima 
and saddle points. 
(iv) At non-critical points r of E(r) the term AE~ should contain a formal 
zero-point energy contribution from a subspace of "R, within which subspace the 
actual point r is a minimum. 
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Note that the postulated AE~ term is not an effective potential added upon 
E(r). At minima and at various saddle points it represents a kinetic energy 
component, intrinsic to the potential energy hypersurface: the local zero-point 
energy. This energy component is independent of any actual trajectory considered 
and of the approach how these trajectories reach a neighborhood of a minimum. 
Consequently, there is no need for a separation of coordinate variables in the 
nuclear configuration space, to one along a specific trajectory and the rest of 
them which are orthogonal to it. 

Since AE~ describes the local zero-point energy at critical points of E(r), we 
expect that the new functional defined as 

E~ = E(r)+ AE~ (2) 

will provide information on potential defying species which owe their existence 
to zero-point energy variations. Note, however, that due to the approximations 
in our model, the approach can guarantee a proper accounting only for one 
(although possibly the most important) type of potential defying species. 

For our purposes it is useful to distinguish the following types of potential defying 
species: 

Type A: those which occur at non-degenerate critical points of the original energy 
hypersurface E (r), but are of different type than expected; e.g. a stable structure 
(minimum) appears where a transition structure (simplest saddle point) is expec- 
ted. The example IHI, quoted above, belongs to this category. 

Type B: those which occur at ordinary non-critical points of E(r). 

For completeness we shall also consider a third case (in certain sense the opposite 
of type B), when a species that is expected at a critical point of E(r) does not 
exist on the hypersurface E~ 

Type C: ("non-species") a critical point of E(r) becomes an ordinary point of 
E~ i.e. an expected chemical species of E(r) "disappears" on E~ 

Although theoretically possible, the author is unaware of any actual chemical 
species that occurs at a degenerate critical point of a potential energy hypersurface 
where the redundant coordinates (e.g. those describing rigid translation of the 
molecule as a whole) are removed. However, for the unlikely case of a potential 
defying species occurring at a degenerate critical point of E(r), a fourth category, 
Type A', is introduced. 

Chemical intuition places stable molecules at minima and transition structures 
at saddle points of E(r). Hence, potential defying species of Type A are perhaps 
the most surprising and of greatest interest, since they involve not only the 
appearance of an unexpected chemical species, but also the disappearance of an 
expected species at the same point r ~ "R. This implies, in fact, that AE~ must 
also have a critical point at r. Potential defying species of Type A are expected 
to be the most common, since any species necessarily belongs to Type A whenever 
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the existence of the critical point is a consequence of the symmetry of the potential 
surface. The symmetry of the potential surface, in turn, is commonly implied by 
some three-space symmetry of the nuclear framework. 

Potential defying species of Type B and "non-species" of Type C are of somewhat 
lesser surprise, since they do not involve the simultaneous disappearance and 
appearance of different types of chemical species in the same neighborhood. 

In order to apply some general topological methods which can give lower bounds 
for the number of potential defying species, we shall require A E~ r) to be a twice 
continuously ditterentiable functional, implying that condition (iii) must be 
strengthened: AE~ must interpolate smoothly between local zero-point energies 
at critical points of E(r). Whereas we shall study in detail only one actual 
construction for an approximate AE~ functional, we shall also describe briefly 
two other possible models for AE~ which may have some utility depending 
on the actual applications. 

In the following we Outline the basic geometrical and topological framework 
used throughout our study. 

For sake of generality we assume that the Born-Oppenheimer energy hypersurface 
E (r), r e nR, is defined over a Riemannian nuclear configuration space ~R, where 
go is the Riemannian metric. Whereas a general hypersurface E(r) is not 
necessarily ditterentiable at every point r E nR, we shall make this assumption (in 
Ref [8] a technique is described how to "make" E(r) twice ditterentiable and a 
similar technique may be applied for higher order derivatives). In fact, we shall 
assume that E (r) is at least fourfold continuously ditterentiable. 

The second covariant derivative [13] of E, in tensorial form, is 

02E i OE 
Hkl -- Fkl ---=- (3) OX k c?x I OX' 

where Fit is the Christoffel symbol of the second kind, 

Fjk = g"[jk, l] (4) 

given in terms of the Christoffel symbol of the first kind, 

_l(cggik.+Og2k Og~'~ 
[U'k]=2\O# Ox' Oxk]" (5) 

The second covariant derivative is the Hessian in the Riemannian space "R (also 
referred to as extended Hessian [11, 14]). H~j(r) at every point r e " R  defines a 
bilinear form 

Hox'x j. (6) 

A set {b(k)} of unit vectors, called local normal mode vectors is defined by the 
condition 

Hub lk ) b~ k) = stationary. (7) 
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If the set {b~k)} is chosen as the local basis at r ~ nR then the Hessian can be 
represented as a diagonal matrix, with eigenvalues 

h i : Hii .  (8) 

In order to make use of  topological invariants [15-18] in enumerating potential 
defying species, we shall construct a topology T ~ defined in terms of Eo(r), 
which topology is analogous to the catchment region topology (Reaction 
Topology) Tc that has been defined [8, 9] in terms of E(r). Various properties 
of the Tc topology has been discussed in some detail elsewhere [8, 9], and it is 
sufficient for our purposes to review only its definition. 

A topology on the nuclear configuration space nR is defined if a consistent set 
of  instructions is given specifying which subsets of nR are considered open sets. 
In a topological space continuity of functions is profoundly affected by this choice, 
since continuity is defined in terms of open sets. The catchment region topology 
Tc has been defined in terms of a generating subbase C [8, 9]. The elements of 
C are subsets of  nR, and each open set within the Tc topology can be generated 
as a union of finite intersections of sets from C. Defining subbase C is the family 
of catchment regions C ~'~> of E(r) and their closures in the metric of "R: 

C = {C ~'i~} t~ {~<~a)}. (9) 

Here each C <A'i) catchment region is the set of origin points of all steepest descent 
paths which belong to a n equivalence class of paths, defined in terms of a common 
extremity r ~'~ [8, 9]. Here A is the number of negative eigenvalues of the Hessian 
matrix ~ ( r )  at extremity r <~'~ or is set equal to -1  if at the extremity E(r) is 
not twice differentiable [15], and i is an index of ordering. From any point within 
a given catchment region an idealized vibrationless relaxation would lead to the 
same extremity, that is typically a critical point of E(r). This generates an 
equivalence class partitioning of all nuclear geometries, and leads to the topologi- 
cal definition of molecular structures as catchment regions C ~a'i~. In the topological 
model the concept of nuclear geometry, as a fundamental chemical concept, is 
replaced by an open set of  geometries. Within the model of vibrationless nuclear 
displacements the catchment region C ~~ of a minimum point r ~~ corresponds 
to a stable molecular structure, whereas the catchment region C ~> of  a saddle 
point r <la) (having precisely one negative canonical curvature, A -- I) corresponds 
to a transition structure ("transition state") [8, 9]. With the aid of the above 
topological concept of  molecular structure, several theorems have been proven 
on reaction networks and on computer-aided quantum chemical synthesis design 
[6]. 

3. The construction of approximate AE~ functionals 

Our aim is to develop a simple model for AE~ that describes the inherently 
quadratic main contribution to zero-point energy in various domains of  E(r), 
and which model is defined in terms of curvature properties of E(r). To some 
extent, the very desire for simplicity will lead to certain complications, however, 
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many of the dominant topological features will be adequately described, and 
we shall be able to avoid the solution (even an approximate solution) of the 
Schr6dinger equation for the nuclear motion. 

It is useful to define a quantity AE (r) for every re  R, as 

A~'E~189 ~ [h,(r)] '/2. (10) 
i = l  

For a twice continuously differentiable E(r) ~'E~ is a (generally complex 
valued) continuous functional over hR. Taking the real part of ~-~O(r), and adding 
it to E(r),  a continuous real functional is obtained: 

E~ = E(r)+Re ~'E'~ (11) 

As follows from Eqs. (8) and (10), at every critical point c~"R of E(r) the 
functional /~~ incorporates the locally defined zero-point energy, in addition 
to the Born-Oppenheimer energy E(r). Since the true zero-point energy is affected 
by curvature variations, Eq. (11) serves only as a local approximation. Neverthe- 
less, for neighborhoods of critical points where E(r)  does not deviate severely 
from quadraticity the term Re ~'E~ is by far the dominant component of the 
zero-point energy. At non-critical points r ~ "R of E(r), functional/~~ interpo- 
lates between values obtained at the critical points, using the locally defined 
formal zero-point energies at intermediate'points, given in terms of local normal 
modes {b~k~}. Although in the strict sense a minimum (or a simple saddle point) 
of E~ does not necessarily imply a bound state (or a transition state, resp.) 
[19], nevertheless, Re ~-E~ is the dominant correction to E(r), influencing the 
occurrence of potential defying species. It is expected that the comparison of the 
topological properties of E(r) and E~ will result in some insight into the 
occurrence of such species. 

It is easily seen that for any quadratic domain of E(r) the effect of Re Ar'E~ 
is a constant shift of the energy hypersurface, and all the topological features of 
the hypersurface (in fact all metric properties as well) remain invariant within 
this domain. Quadraticity, however, is not a necessary condition for topological 
invariance, in spite of the fact that in non-quadratic domains of E(r)  various 
interesting and chemically significant topological changes can occur. 

According to our assumptions E (r) is at least fourfold continuously differentiable, 
implying that E~ is at least twice continuously differentiable in open neighbor- 
hoods of non-degenerate critical points of E(r). Consequently, non-degenerate 
critical points of/~~ can be characterized in terms of Hessians within the same 
open neighborhoods. In fact, functional Re ~--E~ is twice continuously differ- 
entiable almost everywhere in "R, with the exception of those points where any 
of the hi(r) eigenvalues passes through zero. At any such point Re ~-E~ is not 
differentiable, since Re (yl/Z) is non-differentiable at y = 0. These points of non- 
differentiability may appear to limit the usefulness of Re ~-E~ in studying 
potential defying species. However, they will not affect our conclusions regarding 
potential defying species of Type A, and by an arbitrarily small additive term 
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these derivative discontinuities can be eliminated. Furthermore, if such a point 
of non-differentiability happens to be a critical point of E(r) then it can be 
recognized easily since there the Hessian ~ of E(r) must be singular. 

Let us denote the set of all points of non-ditierentiability by D. With the exception 
of pathological surfaces having horizontal valley bottoms or flat plateaus [20], 
the measure of set D is zero in "R. Furthermore, these points cannot occur in 
the immediate vicinity of non-degenerate critical points of E(r), since there 
Ihi(r)l > 0 for every i. Since potential deifying species of Type A occur at such 
critical points, and all derivatives of Re AE~ are continuous there, the enumer- 
ation problem of Type A species is not affected by derivative discontinuities. 
Furthermore, using a method analogous to the "smoothing technique", applied 
for the Dexc~ domains of E(r) [8], one can eliminate the derivative discontinuities 
by adding an arbitrarily small term f(r). By applying this technique we may 
construct our simplest model (model 1) for AE~ as 

AE O(r) -- Re A~"E~ +f( r )  (12) 

where f(r) is a continuous function that is zero everywhere in "R except in some 
arbitrarily small neighborhoods of points of D, where f(r) is chosen such that 
that it makes AE~ twice continuously ditterentiable. 

Note that an actual evaluation off(r)  is not required for the enumeration problem, 
and it suffices to establish that such f(r) exists. 

Functional AE~ of model 1 fulfills all four conditions (i)-(iv) given for AE~ 
It has the proper features at non-degenerate critical points of E(r), it accounts 
for all potential defying species of Type A, and it is consistent with the usual 
local harmonic approximation, used in the conventional treatment of zero-point 
energy in single minimum potentials. In our case the local quadratic approxima- 
tion refers to a hypersurface of many critical points: as long as the hypersurface 
can be approximated locally in small neighborhoods of any point r by quadratic 
functional, AE~ is a good approximation. This underlines the privileged role 
of Type A potential defying species: as follows from the Morse lemma [20], at 
every non-degenerate critical point of an arbitrary hypersurface a local quadratic 
approximation is always sufficient, hence AE~ describes properly the local 
neighborhoods of critical points of all potential defying species of Type A. Note 
that most hypersurfaces can be treated by local quadratic approximations in their 
various domains, even if they are very much non-quadratic globally. Degenerate 
critical points or analogous ordinary points where the surface is dominated by 
cubic or higher order terms, are required to render the local quadratic approxima- 
tion inapplicable. 

Due to the approximations involved in model l, one may expect that AE~ is 
inappropriate in all such special cases for which at any point r the cubic or 
higher order terms become large (dominant). However, such large cubic and 
higher order contributions to E~ which may cause the occurrence of false 
critical points, are not expected to be common. E.g. elementary calculus shows 
that along a repulsive segment of a one dimensional potential E(r) the following 
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condition must hold at some point r, 

c E"( r )  >lE'(r)l  
2 (~"(r)) '/: 

P. G. Mezey  

(13) 

in order to introduce a false minimum on the corresponding functional E~ 
Here constant c is the coefficient in the definition of ~-E~ (Eq. (10)): 

c=h/2. 

Whereas the fulfillment of the above condition is not impossible, it implies a 
large relative value for the third derivative E'"(r), i.e. a severe local non-quadra- 
ticity at point r. Whenever the local quadratic approximation fails to such an 
extent, then an approximate AE~ is not applicable for the description of 
potential defying species of cases B and C. For these cases, if severe non- 
quadraticity occurs, then no simple approach seems to be viable, and one is 
ultimately facing the solution of the Schr/Sdinger equation for the nuclear motions 
over E(r). The important point, however, is that even if severe local non- 
quadraticities occur on E(r), potential defying species of Type A are adequately 
accounted for by AE~ 

We note that raising the potential energy profile of barriers by the zero-point 
energy has been discussed by several authors [21-25], and there seems to exist 
some ambiguity as to the best approach [26]. Our choice of the functional AE~ 
of model 1 in the local quadratic approximation is an attempt to account for 
most potential defying species by a simple approximate method. 

The second approximate model discussed in this study can be regarded as an 
extension of model 1, that also includes a simple description of tunnel effects at 
the same level of local quadratic approximation. Several authors have noted the 
remarkable analogy between tunnel effect across parabolic barriers and the 
vibration problem in parabolic potential wells, obtained by simply inverting the 
barrier [27-31]. The above suggestions, which are based, at least in part, on 
intuition, appear to be consistent with a lowering of the barrier by a quantity 

r~-..~ 0 
analogous to Re AE (r). We choose the approximate functional AE~ of model 
2 as 

AEO(r) = ~-~o Re AE (r) - I m  ~---E~ + g(r).  (15) 

Note that the Re ~'-E~ - Im ~-E'~ difference is smooth everywhere in nR, since 
due to the properties of function yl/2 at y = 0, - I m  ~-E~ is the natural, smooth 
continuation of Re ~-E~ whenever any of the hi(r) eigenvalues changes its 
sign. Thus, there appears to be a (somewhat intuitive) justification for taking this 
difference as the basis of  model 2. However, the derivatives of this difference are 
not everywhere bounded in nR, and the role of functional g(r)  is to make the 
first and second derivatives of AE~ finite. Functional g(r)  is defined 
analogously to f(r) and it is zero everywhere in "R except in arbitrarily small 
neighborhoods of those points where any of the hi(r) eigenvalues of the local 
Hessian becomes zero. 
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In functional AE~ the zero-point energy and tunneling are treated at the same 
level of  local quadratic approximation. One may, however, address the tunneling 
problem differently, still within the framework of the local quadratic model. 
Considering an infinite parabolic barrier, and using the notations of  Ref. [25], 
one may ask the following question: by what energy value ET must one lower 
the parabolic barrier from Vo to 

V'o = Vo - Er  (16) 

in order to have a classical rate Jc(V'o) of  particle transfer for the new barrier 
that equals the quantum mechanical rate J(Vo) for the original barrier? This 
problem can be solved exactly for the one-dimensional case and one obtains 

ET = kT(z2 /6+ Z4/180+ z6/2835 + z8/37800+ �9 �9 .) (17) 

where 

z = ( h / 2 k T " ) ( -  hi)'~2 (18) 

and hj is the curvature of negative value. (A derivation of the above result is 
given in the Appendix.) 

Since this formula is strictly valid only for the one-dimensional case, on multi- 
dimensional potential surfaces it may serve only as an approximation at saddle 
points of transition structures or at analogous non-critical points of one negative 
canonical curvature in the local quadratic approximation. One may expect, 
however, some cancellation of errors in this model. On the one hand, one source 
of error is that cross sections of real potential hypersurfaces are not infinite 
parabolic barriers, hence, as compared to a more realistic truncated parabolic 
barrier, both J and ET are overestimated by the model. On the other hand, 
tunneling contributions in the multidimensional case along directions intermedi- 
ate between local canonical coordinate directions are not included, that tends to 
underestimate both J and Er. These two features of the model result in a partial 
error cancellation. 

Points with more than one negative local curvature are of lesser importance than 
those with one or none, and their significance in tunneling is less clear than that 
of  simple saddle points [25], since such points can always be avoided on the 
surface by paths of lower energy. For the sake of a uniform treatment, at such 
points a sum of  contributions from all negative local canonical curvature direc- 
tions will be considered. We shall take AE~ as 

AE~176  - • E r ( z j ) + f ( r )  (19) 
J 

(hi<O) 

where Ev(zj) is defined by Eq. (17), and its argument is 

zj = ( h / 2 k T ) ( - h ; ( r )  ) '/2. (20) 

All three models are based on a simple local quadratic approximation and in all 
three the dominant contribution to AE~ comes from Re ~'E~ in all those 
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domains of the hypersurface where the positive local canonical curvatures out- 
number the negative ones, that is valid for the chemically most important reactive 
domains D r of small/z indices [4]. We shall see later that all three models and 
possibly many other approximate models which satisfy certain constraints on 
their critical points and which can be defined on the same compact manifold, 
will lead to very similar topological constraints on potential defying species. In 
the following discussion many of the results will be equally applicable to all 
three approximations as well as to the postulated ideal functional AE~ We 
shall in general refer to AE~ and to the corresponding E~ functionals, and 
an actual approximate model will be specified only if its particular features give 
rise to special relations. 

We define the new topology T ~ by replacing E(r) by E~ throughout the 
definition of To 

The nuclear configuration space "R, equipped with topology Tc or topology T ~ 
becomes topological space ("R, Tc) or ("R, T~  respectively. We shall show that 
these two topological spaces are not in general homeomorphic (topologically 
equivalent), that is, there does not necessarily exist a homeomorphism (continuous 
one-to-one and onto mapping) between them. The chemical implication of such 
a topological non-equivalence is that certain chemical structures that apparently 
exist according to the vibrationless approximation in ("R, To), become non- 
existent in the local zero-point energy approximation of topological space 
("R, T ~  or vice versa. Before reaching our conclusions on this topological 
non-equivalence, we shall investigate some local and global criteria for the 
occurrence of  potential defying species. 

4. Local geometric criteria 

Take a critical point r ~'i) ~ A ~ "R, where set A is a connected subset of "R, open 
in the metric of "R. Within set A the Hessian ~ ( r ) ,  the local normal mode vectors 
bck)(r) and curvatures hk(r) are continuous in r. We assume that the local normal 
mode vectors are ordered at every point, such that along any path from r to r ~x'~ 
in A, b~k)(r) converges smoothly to the k 'h local normal mode vector b~k)(r ~'~ 
at critical point r ~a'~ We assume that the curvatures are classified into four 
classes, (a), (b), (c) and (d): 
(a) Within set A there are at least s "soft" local normal modes fulfilling 

Ih,(r)l<_a , i = l , . . . , s  (21) 

for every r e A and for some small positive number a. 
(b) There are v local normal modes for which the curvatures hi(r) are positive 
and show large variations within A: for i=  s+  1 , . . . ,  s+v, and every r e A  

h,(r) > 0, (22) 

max h,( r ) - r a i n  hi(r) >- b (23) 
~.cA t e a  
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where b is a large positive number, 

b > a. (24) 

(c) There is one (l = 1) or none (l = 0) canonical curvature with a large negative 
value, 

hi(r) < -a.  (25) 

(d) For the remaining n - s - v -  I local normal modes the hi(r) curvature values 
are positive and show only small variations within A: for every i=  
s + v + l + l , . . . , n ,  r ~ A  

hi(r) > 0 (26) 

and 

max,~A hi(r) -miAn hi(r) < c (27) 

where c is a small positive number, 

c<< b. (28) 

The above classification of  curvatures is possible within an appropriately chosen 
neighborhood A of any critical point r (a'i) that has at most one canonical curvature 
of large negative value, i.e. less than - a .  

From the above conditions it follows that 

.~ -< s +/. (29) 

The local subspace 5~ spanned by the "soft"  local normal modes {b(k)(r)}~k=l 
also converges smoothly to the local subspace 5~(r(~'i)), spanned by {b(k)(r(~'O)}~k= 
at the critical point, as r converges to r (a'i). This latter subspace is of special 
importance. If l = 0, then for A = 1, i.e. for a saddle point r (1'i) of a transition 
structure, the minimum energy path passing through r (x'i~ as its transition point, 
must have its tangent parallel to b(~)(r (w~) at the critical point, where the choice 
of indices k is such that 

hl(r (l'i)) = min {hk(r(l'i))}. (30) 

If A = 0, i.e. if the critical point [r (~ is a minimum, then one can easily construct 
examples where a minimum energy path approaches r ~~176 in the orthogonal 
complement of  5e(r). Nevertheless, in the set of all steepest descent paths 
approaching r (~ such minimum energy paths form a subset of measure zero, 
that is, almost every steepest descent path has tangent at r (~ that is within 
re(r(~176 Furthermore, if h~(r (~176 is a non-degenerate eigenvalue, then almost 
every tangent is parallel to b(1)(r(~176 

The differences between the Tc and T ~ topologies, defined in terms of  hypersur- 
faces E(r) and E~ respectively, are influenced mostly by the behavior of 
group (b) of  the v variable curvatures, in the neighborhood A of  r (~'~ 
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For simplicity, let us first consider a special case and assume that point rc is a 
non-degenerate critical point of both E(r) and E~ having index A and ;t ~ 
respectively: 

r c = r (x ' i )  = r ( x ~ 1 7 6  (31) 

The above condition, although not necessarily valid, is often implied by symmetry 
of potential energy hypersurfaces. If  this condition is valid, then local criteria 
can be given for the zero-point energy influenced existence of chemical species. 
Following the discussion of local criteria, we shall also discuss global criteria, 
applicable even if condition (31) is not valid. 

We are interested mostly in those cases of potential defying species of Type A, 
where 

A # 3, 0 (32) 

and either 

A --< 1 (33) 

o r  

A~ 1, (34) 

i.e. where the type of the critical point, hence that of the corresponding chemical 
structure changes upon inclusion of the local zero-point energy, and either on 
E(r) or on E~ a formal stable molecule or a transition structure is involved. 

Eq. (31) implies that rc is a critical point of AE~ as well, with an index Aa: 

rc = r (~';~). (35) 

The indices A, )to and A ~ of the respective critical points are not independent. 
Elementary considerations of the curvature properties, subject to conditions 
(32)-(34) on the chemically interesting cases, lead to the following relations: 

(i) A=0,  A ~  ~ ;ta-----1 (36) 

(ii) A=0,  A~ ~ ha>--A~ (37) 

(iii) A = I , A ~  ~ Xa_<n-1 (38) 

(iv) A = I , A ~  ~ Aa-----I (39) 

(v) A>-2, A~ ~ AA--n--2 (40) 

(vi) A_>2, A~ ~ Aa<_n-1.  (41) 

For example, in case (i) the inclusion of  zero-point energy converts a formal 
stable molecule of E(r) into a transition structure of E~ implying that rc 
cannot be a minimum point of AE~ Case (iii) corresponds to the example 
IHI quoted above, implying that rc cannot be a maximum of  AE~ 

The converses of relations (36 ) - . .  (41) are not in general valid; the listed 
inequalities for A ~ are only necessary but not sufficient conditions for the respec- 
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tive cases (i) �9 �9 �9 (vi). A more general necessary condition, applying also for the 
chemically unimportant cases of ,~, A -> 2, can be written as 

A ~  < n + A ~  (42) 

Let us consider model 1 in which curvature properties are the most tractable. 

In order to obtain sufficient conditions for cases (i) �9 �9 �9 (vi), we first observe that 
for any domain A where E(r) is quadratic, the Hessian ~a ( r ) ,  associated with 
Re ~ ~  is identically zero, 

Y(a(r) =0,  r~A (43) 

hence at rc ~ A all eigenvalues of  ~a(rc) as well as A a are zero: 

3. a = 0. (44) 

On the other hand, eigenvalues of large absolute values can occur for YCa(rc) 
only if E(r) shows severe deviations from quadraticity within A. Such severe 
deviations from quadraticity that may change the signs of  curvatures along the 
"hard"  local normal modes, are unlikely to occur in actual chemical problems. 
We may conclude that for a domain A within which E(r) is moderately non- 
quadratic, the term Re A-'E~ is likely to influence the signs of curvatures only 
within subspace ~(rc) of  the "soft" local modes. The deviations from quadratic- 
ity, on the other hand, are expected to originate mostly from variations of those 
"variable" curvatures which belong to a subspace ~ spanned by local normal 

S+V mode vectors {b(k)(rC)}k=,+l. Evidently, subspaces be(rc) and ~(rc) are 
orthogonal to each other. 

If  all sign changes of curvatures occur within 0~ c) then it is sufficient to consider 
the s-dimensional subset 

A~ = a n  5~(rc) (45) 

and the cross sections Es(r), E~ and Re A-'E~ of E(r), E~ and Re A'-'E~ 
respectively, within A~. The corresponding Hessians YC~(rc), Ze~(rc) and YCa~(rc), 
restricted to As, have the following critical point indices within As: 

A, = A - l (46) 
0 h , - A ~  (47) 

A~a=A~ (48) 

On the basis of  the {b(k)(rC)}~k=l local normal modes the (~)kk'  matrix element, 
where 

l<_k,k'<_s, 

is obtained from Eq. (10) as 

~, 1 ~ 02h, 
(9~,)kk,=~h ~ hT ~/2[oxkax k, 

i:hi>O 

(49) 

Ohi Oh i 
�89 ~x k o-'~'J" (50) 
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Let us denote by rn(-a) the number ot~those h~ eigenvalues of Yga~(rc) for which 

h~< - a ,  (51) 

and by m(a) the number of those h~ eigenvalues for which 
A 

hk> a. (52) 

Then, in terms of Yg~(rc) sufficient local criteria can be given for cases (i) �9 �9 �9 (vi), 
as follows: 

for cases (i) and (ii) 

m(-a)  = A ~ (53) 

whereas for (iii) and (v) 

re(a) = s - A  ~ (54) 

If l =  O, then for cases (iv) and (vi) a sufficient condition is that both (53) and 
(54) are fulfilled, whereas, if l=  1, then for case (iv) 

rn(-a)= A ~  (55) 

and for case (vi) 

re(a) = s - A ~  1 (56) 

are sufficient conditions. 

5. Global topological criteria 

If condition (31 ), hence relation (35) are not satisfied, then local criteria, referring 
to a single point rc ~ ~R, are insufficient to give indication for the existence or 
non-existence of "potential-defying" chemical species. In such cases, one may 
investigate the global topological properties of hypersurfaces E(r), E~ and 
AXE~ 

In particular, we shall investigate the necessity of  simultaneous occurrence of  
several "potential defying" species, that is a consequence of the general topologi- 
cal properties of the hypersurfaces investigated. We shall conclude that if one 
potential defying species exists then others must also exist on the same surface, 
and there are topological invariants that restrict the number and type of such 
species. 

Let us assume that we are interested in chemical structures within a connected 
open subset A c "R. The relative topologies, TcA and T~ restricted to A, are 
defined as 

TCA= { GA: GA= A n Gc, Gc ~ Tc} 

and 

(57) 

T~176 G ~  G ~ , G ~  T ~  (58) 
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respectively. In particular, chemical structures C (~'i) and C ~ of topological 
spaces (~R, Tc) and ("R, T~ respectively, for which 

r (~'i) ~ A (59) 

and 

r ~ ~ A ,  (60) 

are represented in the relative topologies TCA and T~ by 

C(~ ' ~  Am C (~'i) (61) 

and 

C~ a'i) = A ~ C ~ (62) 

respectively. 

In order to investigate the global criteria, we shall map set A to a compact, 
orientable manifold, using a technique similar to the compactification and map- 
pings described in Refs. [8, 15, 16]. 

We assume that the closure A of subset A is contained in a simply connected 
open set B, 

fi, c B (63) 

and within B \ A  both functions E(r)  and E~ can be continuously and twice 
differentiably deformed into functions E(r)  and/7~ respectively. These defor- 
mations are such that at the boundary of /~  the new functions take the constant 
values f and fo, which are their respective maximum values within/~. Within set 
A there is no deformation, 

E(r) = E(r), re  A (64) 

l~~ = E~ re A, (65) 

by definition. One may visualize these deformations as "pulling up" E(r) and 
E~ at the boundary of/~ to equal height, without changing the functions within 
set A. We shall also assume that these deformations are accomplished with the 
minimum number of critical points occurring in B\A,  and that these critical points 
are nondegenerate. Set /~, with functions /~(r) and /~~ can then he mapped 
onto a compact manifold M',  where the entire boundary of/~ can be identified 
with a single point p ~ M'.  For simply connected sets A and B manifold M'  can 
be chosen as a topological sphere, point p being its "north pole", representing 
the absolute maximum of both E(r)  and/~~ on M'. 

In fact, it is sufficient to know that such deformations and transformations exist, 
and carrying out of an actual transformation is not required as long as the critical 
points in B \ A  are accounted for. We may illustrate this point using the example 
of the IHI system. One may choose A as a sufficiently large but bounded subset 
of SR, containing a neighborhood of the saddle point r ~ of E(r). By taking a 
larger set B, containing A, and "pulling up" E(r) at the rim of B, one introduces 
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two new minima within B\A,  which in fact take the roles of the degenerate 
minima of the original function E(r) at infinite nuclear separations. These two 
minima represent the minimum number of critical points that one can obtain 
within BkA by a continuous deformation of E(r), subject to the condition that 
at the boundary o f /~ /~( r )  is maximum. The interior of /~  is mapped onto a 
punctured topological sphere of dimension 3, from which the north pole p is 
removed, whereas the entire boundary of/~ is identified with the single point p, 
completing the compact manifold. Function/~(y) is re-defined on M', by taking 
the same function values at points of M'\p  and B that are assigned to each 
other, and by assigning the common function value f at the boundary of /~ to 
point p ~ M'. Function/~O(y) on M' is defined analogously. 

The deformations in B \ A  can always be chosen such that the resulting functions 
/~(y) and /~O(y) are twice differentiable at p ~ M', at every other point y E M' 
this condition is assured by the definition of these functions, and by the application 
of the smoothing technique of Ref [8]. 

If neither function/~(y) nor/~O(y) has degenerate critical points then the number 
of various chemical structures (catchment regions) defined by them is subject to 
a set of common constraints, governed by the topological invariants of manifold 
M'. That is, inclusion of the local zero-point energy, leading to function/~O(y), 
cannot cause arbitrary changes is the number and type of chemical structures 
appearing or disappearing, as compared to the simple potential surface approxi- 
mation based on/~(y). Whatever new "potential defying" chemical species occur 
on /~O(y), the total number of various species (stable molecules, transition 
structures, as well as unstable formal "species" represented by catchment regions 
of critical points of higher indices, h = 2 , . . . ,  n, which are also required for a 
systematic partitioning of the hypersurface [8]) must fulfill the constraints set by 
the topological invariants of M', just as the catchment regions of the simple 
potential /~(y) must satisfy these constraints. These topological invariants are 

B " the set { ~}x~o of Betti numbers, that are lower bounds for the number m~ of 
critical points of index h, 

ma - Ba ()t = 0 , . . . ,  n) (66) 

and the Euler-Poincar6 characteristic X of M'. Critical point relations [17, 18], 
in particular the Morse relations 

mx - mx-i + ma-2 . . . .  :t: mo> _ B~ - Bx-i + B x - 2  . . . .  -4- Bo ( 0 - X < n )  
(67) 

and 

(-1)area= ~ ( -1 )aBx=x  (68) 
A=0 k ~ O  

constrain the possible combinations of the numbers ma of various chemical 
structures on M', hence in B c "R. 

As an illustration of the above constraints, take the example of the system IHI. 
E(r) in set A has one saddle point of index h = 1 and no other critical points. 
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Mapping of  /~ onto M',  that is, onto a topological three-sphere 3b~ certainly 
introduces one maximum of /~(y)  at y = p. The topological invariants of  35e are 
B1 = B2 = X = 0, Bo = B 3  = 1. Consequently, Eq. (68) implies that ml = 1 and m3 = 1 
is possible only if 

mo+ m2 = 2. (69) 

Inequality (66) for )t = 0 implies that 

mo -> 1 (70) 

and from symmetry it follows that 

mo=2 (71) 

m2 = 0 (72) 

that is, we must have two minima in B \ A  for funct ion/~(r) .  

The effects of  the inclusion of local zero-point energy for IH1 are not restricted 
to the replacement of  the saddle point with a minimum in E~ and/~O(y), since 
the constraints (66)-(68) apply to /~O(y) just as well as to /~(y) .  Now we have 
at least one minimum and one maximum. In fact, the implied two chemical 
structures, one, the catchment region of  the minimum, and one additional formal 
chemical structure, the single point "catchment region" at p, fulfill the topological 
constraints (66)-(68) with mo = 1, mt=  rn 2 = 0, m3 = 1. One may expect, however, 
that on E~ the two degenerate minima at infinite nuclear separations (for 
I H  + I and I + HI, resp.) exist, consequently, for a large enough set A the function 
/~~ on B will have three minima. The numbers mo= 3 and m3 = 1, however, 
are compatible with Eq. (68) only if 

- m l  + m 2  ----- -2 .  

The simplest solution to Eq. (73) is 

m~=2 

rn2 = 0 

(73) 

(74) 

(75) 

that implies, two additional saddle points of  transition structures. In this case, 
the inclusion of  local zero-point energy caused the appearance not only of a 
"potential defying" stable molecule, as the catchment region of  the new minimum, 
but also that of two transition structures, not present on E(r ) .  Whereas the above 
conclusions can be reached on an intuitive basis for chemical systems as simple 
as IHI, for more complicated multidimensional cases, intuition and attempts to 
visualize hypersurfaces may not be sufficient, and then the formal application of 
the topological constraints may well be the only available method. 

Hypersurfaces E(r)  and E~ on A, as well as functions /~(y) and /~O(y) on 
manifold M' ,  can be continuously deformed into each other. Assuming that the 
local zero-point energy contribution is "switched on" in a continuous manner, 
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one can define a (generally non-unique) homotopy H(y, t) as 

H(y, t ) :M' |  tR, y ~ M ' ,  t e l  

H(y, O) = ff~(y) 

H(y, 1) =/~O(y) 

H(y, t) =/7(t)(y): M'-> ~R 

P. G. Mezey 

(76) 

(77) 

(78) 

(79) 

where I = [0, 1] is the unit interval, and/~(,)(y) is a twice continuously differenti- 
able function on M'. 

Any homotopy H(y, t), fulfilling the above conditions, can be used for diagnosing 
the possibility of those cases where inclusion of local zero-point energy changes 
the character and /or  the number of chemical structures. A simple necessary 
(although not in general sufficient) condition can be given as follows. 

Whenever such a change occurs, then either 
(i) the index A of some critical points must change 
or 
(ii) there is a simultaneous change in several of the m~ numbers, subject to 
constraints (66)-(68). 

In case (i) the number of negative eigenvalues of the Hessian matrix changes at 
some critical point, consequently, there must exist some value t such that on the 
associated hypersurface H(y, t)=/~(,)(y) over manifold M'  there is a critical 
point with a formal zero eigenvalue of its Hessian, i.e. a degenerate critical point. 
In case (ii) a simultaneous appearance or disappearance of several critical points 
implies that for certain t a degenerate critical point, e.g. one associated with a 
bifurcation of critical points of the corresponding hypersurface H(y, t) = ff.(t)(Y), 
must exist. Consequently, the existence of "potential defying" chemical species, 
as well as the non-existence of chemical species implied by the simple potential 
model of E,(r), implies, for both cases (i) and (ii) that any homotopy satisfying 
conditions (76)-(79) must generate an E(,)(y) hypersurface with degenerate critical 
points for certain intermediate t value, 0 < t < 1. 
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Appendix 

Following the notations of Ref. [25], the infinite parabolic potential barrier is 
given as 

v ( x )  = - �89  2 (AI) 

where A = -hj. > 0 is the curvature of the parabola. Jc and J stand for the classical 
and quantum mechanical rates of particle transfer, respectively, where the latter 
includes tunneling. The permeability G(W)  of the barrier at energy W is given 
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by 

G( W )  = {1 + exp [( Vo-  W)/h/2r - 1  (A2) 

where the imaginary frequency iur is given by 

~'~, = Al/2/2zr (A3) 

if mass-weighted coordinate x is used. 

Our aim is to derive a formula for an effective lowering E r  of the potential, that 
produces a hypothetical classical potential with maximum 

V~ = Vo - E r  (A4) 

for which the classical rate is equal to the quantum mechanical rate of the original 
potential: 

]c( V') = J (V) .  (A5) 

Substitution of  the classical and quantum mechanical expressions for the rates 
gives 

io exp ( -  V ; / k r )  = 1 / k r  exp ( -  W / k T ) / { 1  +exp  [( Vo-  W) /hv~]}  dW. 

(A6) 
Introducing the new variable W'=  W -  Vo gives 

F exp ( E r / k T )  = 1 / k T  exp ( -  W ' / k T ) / { 1  + exp [ -  W'/h~,~]} dW' .  (A7) 
vo 

If W = 0 corresponds to a sufficiently low energy value, then - Vo can be replaced 
with -co in the integration. Subject to the condition that 

k r  > h ~,~ (A8) 

the above integral gives [32] 

exp ( E T / k T )  = z cosec z (A9) 

where 

z = 7rhu~/(kT) = hA~/2/(2kT).  (A10) 

Eq. (A9) can be rewritten as 

- E r / k T = l n  (sin z / z )  = ~ (-1)"22n-~/(n(2n)!)b2.z  2n (Al l )  
r t = l  

where bn are the Bernoulli numbers [33]. Substitution up to the term of degree 
eight gives the final result as given in Eq. (17): 

E T = kT(z2 /6  + z4/180 + z6/2835 + z8/37800 +.  �9 .). (A12) 
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